We aim to augment recovery in spinal cord (SC) injured patients. Electrical stimulation of the SC can facilitate recovery, but the mechanisms are not yet understood. One knowledge gap lies in the exact pathways that are recruited by stimulation. To close this gap, we have tested the effects of SC stimulation in people undergoing clinically indicated surgery. By testing the distribution and size of muscle responses to SC stimulation, we can infer which circuits are activated. We are also examining how SC injury changes those responses. We propose to use Bayesian methods to understand the interaction between muscle responses to stimulation and the MRI indicated pattern of damage. The project will involve construction of models linking multiple data modalities that predict muscle activity, followed by the modification of these models to account for patterns of damage. Construction of such models would enable a deeper understanding of SC stimulation leading to more effective stimulation paradigms.
We have been studying bladder cancer in a mouse model of the disease and we are seeking to understand the molecular features of the mouse models as they relate to human bladder cancer.
A major challenge to implementing precision medicine arises from patients who share a clinical diagnosis but have different biological causes of disease. Disease subtypes that arise from obscure etiological heterogeneity create inefficiencies in healthcare and attenuate power in clinical trials and research studies. The ability to stratify patients into biologically homogenous subgroups improves the potential for translational research by allowing us to design more powerful studies.
Our lab develops an open-source text mining software called NimbleMiner (http://github.com/mtopaz/NimbleMiner). We will work on improving the software using the latest machine learning techniques.
Data is central to the NYC Department of Health’s mission to protect and promote the health of all New Yorkers. The agency’s many programs often require large scale record linkages that integrate data from individuals across multiple public health data systems and disease registries. We are implementing a Master Person Index (MPI) system in order to centralize, optimize and standardize matching methodology for administrative data across the Department of Health.
We are interested in investigating how deaths and hospitalizations resulting from opioid overdoses cluster across space and time in the US. This analysis will be conducted with the aid of two comprehensive databases: 1) detailed mortality data across the US; and 2) a stratified sample of all hospitalizations in the US, which can be subset to select for opioid overdoses. Analyses will be extended to drug type (prescription drugs, fentanyl etc.) and subject demographics (age, race, etc.). We have previously conducted similar cluster analysis for other health phenomena.
We have been studying bladder cancer in a mouse model of the disease and we are seeking to understand the molecular features of the mouse models as they relate to human bladder cancer.