Decoding behavioral signifiers for the brain state of vigilance can have far reaching implications for understanding actions and identifying disease. We are using high resolution video recordings of mice as they navigate a maze, but have access to very few pre-determined behavioral signifiers. Several recent publications implemented computer vision to extract a variety of previously unreachable aspects of behavioral analysis, including animal pose estimation and distinguishable internal states. These descriptions allowed for the identification and characterization of dynamics, which then revealed an unprecedented richness to the behaviors that determine decision making. Applying such computational approaches in our maze in the context of behaviors that have been validated to measure choice and memory can reveal dimensions of behavior that predict or even determine psychological constructs like vigilance. DSI scholars would use pose estimation analysis to evaluate behavioral signifiers for choice and memory and relate it to our real time concurrent measures of neural activity and transmitter release. The students would also have opportunity to examine the effect of disease models known to impair performance on our maze task on any identified signifier.

Continue reading

5G cellular networks will use high-frequency millimeter-wave (mmWave) communication, which promises high data rates and ample spectrum availability. Students working on this project will help conduct a mmWave wireless channel measurement campaign around the COSMOS testbed (www.cosmos-lab.org), a wireless networking testbed located at Columbia stretching between 120th and 136th St. In collaboration with Bell Labs students will be able to use unique, state-of-the-art mmWave equipment to conduct these measurements (see pre-pandemic example in https://wimnet.ee.columbia.edu/wp-content/uploads/2019/08/mmNets2019_COSMOS_28GHz.pdf). The measurements will play an important role in the development of network-level control algorithms, which is the other, more analytical side of this research project.

Continue reading

The human microbiome is associated with different diseases, but the metabolic mechanisms through which it can modulate health are mostly unknown. Understanding these mechanisms is of paramount importance for prevention and treatment. While metagenomics analysis provides associations between microbial presence and specific diseases, metabolomics analysis can highlight metabolic alterations. None of the two, however, can unveil microbiome metabolic mechanisms associated with these detected alterations. In an attempt to fill this knowledge gap, several microbiome metabolic modeling methods were recently developed. An accurate evaluation of the accuracy of such methods in relation to different pathologies and microbiomes was never conducted.

Continue reading

Until today there is no comprehensive theory for formation of tropical cyclones (hurricanes, typhoons). Therefore, it is common to use statistical methods to derive empirical indices as proxies for the probability for genesis. There are also different types of genesis pathways that have been explored in ad-hoc manner. I would like to explore the possibility of using machine learning to explore tropical cyclone genesis, in particular the different pathways in a more comprehensive manner.

Continue reading

Orienting to a novel event is a rapid shift in attention to a change in one’s surroundings that appears to be a fundamental biological mechanism for survival and essentially functions as a “what is it” detector. Orienting appears to play a central role in human learning and development, as it facilitates adaptation to an ever-changing environment. Thus, orienting can be viewed as an allocational mechanism in which attention sifts through the complex multi-sensory world and selects relevant stimuli for further processing. The selection of stimuli for further processing has implications for what will be encoded into memories and how strong those memory traces will be. The ability to differentiate between relevant and irrelevant input, to inhibit the processing of irrelevant stimuli, and to sustain attention requires control, and inhibitory processes that improve with age.

Continue reading

Advances in data collection technologies in neuroscience has resulted in a deluge of high-quality data that needs to be analyzed, and presented to the experimentalist in a meaningful way. Usually the “data analysis and visualization”-pipeline is built from scratch for each new experiment resulting in a significant amount of code duplication and wasted effort in rebuilding the analysis tools. There is a growing need for a unified system to automate much of the repetitive tasks and aid biologists in understanding their data more efficiently.

Continue reading

Author's picture

Columbia Data Science Institute (DSI) Scholars Program

The DSI Scholars Program is to engage and support undergraduate and master students in participating data science related research with Columbia faculty. The program’s unique enrichment activities will foster a learning and collaborative community in data science at Columbia.

Columbia University DSI

New York, NY