Orienting to a novel event is a rapid shift in attention to a change in one’s surroundings that appears to be a fundamental biological mechanism for survival and essentially functions as a “what is it” detector. Orienting appears to play a central role in human learning and development, as it facilitates adaptation to an ever-changing environment. Thus, orienting can be viewed as an allocational mechanism in which attention sifts through the complex multi-sensory world and selects relevant stimuli for further processing. The selection of stimuli for further processing has implications for what will be encoded into memories and how strong those memory traces will be. The ability to differentiate between relevant and irrelevant input, to inhibit the processing of irrelevant stimuli, and to sustain attention requires control, and inhibitory processes that improve with age.

Continue reading

Columbia University Data Science Institute is pleased to announce that the Data Science Institute (DSI) and Data For Good Scholars programs for Spring-Summer 2020 are open for application.

The goal of the DSI Scholars Program is to engage Columbia University’s undergraduate and master’s students in data science research with Columbia faculty through a research internship. The program connects students with research projects across Columbia and provides student researchers with an additional learning experience and networking opportunities. Through unique enrichment activities, this program aims to foster a learning and collaborative community in data science at Columbia.

The Data For Good Scholars program connects student volunteers to organizations and individuals working for the social good whose projects have developed a need for data science expertise. As “real world” problems with real world data, these projects are excellent opportunities for students to learn how data science is practiced outside of the university setting and to learn how to work effectively with people for whom data science sits outside of their subject area.

Continue reading

This project builds on a novel cellular model of human aging (Sturm et al. Epigenomics 2019) where we can investigate trajectories of multiple molecular features of aging over long time periods. The underlying multi-omic dataset includes epigenomic (DNA methylation), proteomic (protein abundance), bioenergetics (mitochondrial respiration), telomere length, and various secreted factors. A major challenge for the DSI Fellow will be to integrate the multi-omic dataset to capture dynamic signatures of mitochondrial dysfunction and cellular aging, working collaboratively with other scientists. The existing project is expected to result in one or more publications. Possibility to continue work for pay over the summer.

Continue reading

Advances in data collection technologies in neuroscience has resulted in a deluge of high-quality data that needs to be analyzed, and presented to the experimentalist in a meaningful way. Usually the “data analysis and visualization”-pipeline is built from scratch for each new experiment resulting in a significant amount of code duplication and wasted effort in rebuilding the analysis tools. There is a growing need for a unified system to automate much of the repetitive tasks and aid biologists in understanding their data more efficiently.

Continue reading

We aim to augment recovery in spinal cord (SC) injured patients. Electrical stimulation of the SC can facilitate recovery, but the mechanisms are not yet understood. One knowledge gap lies in the exact pathways that are recruited by stimulation. To close this gap, we have tested the effects of SC stimulation in people undergoing clinically indicated surgery. By testing the distribution and size of muscle responses to SC stimulation, we can infer which circuits are activated. We are also examining how SC injury changes those responses. We propose to use Bayesian methods to understand the interaction between muscle responses to stimulation and the MRI indicated pattern of damage. The project will involve construction of models linking multiple data modalities that predict muscle activity, followed by the modification of these models to account for patterns of damage. Construction of such models would enable a deeper understanding of SC stimulation leading to more effective stimulation paradigms.

Continue reading

Author's picture

Columbia Data Science Institute (DSI) Scholars Program

The DSI Scholars Program is to engage and support undergraduate and master students in participating data science related research with Columbia faculty. The program’s unique enrichment activities will foster a learning and collaborative community in data science at Columbia.

Columbia University DSI

New York, NY