Finding the exact counterpart galaxies to merging black hole binaries detected in gravitational waves is one of the most pressing problems in cosmology. The redshift of the host galaxy (which has to be measured from its electromagnetic emission) combined with the luminosity distance to the gravitational wave source allows for a direct measurement of the expansion history of the Universe, an approach commonly referred to as the ‘Standard Siren’ method. To date, there are no proven techniques for accomplishing this goal.

Continue reading

Injury, such as falls, motor vehicle crashes, and drug overdose, is a major source of morbidity and mortality. The interaction between injury and disease is complex and mutually causative. For instance, patients with Alzheimer’s Disease or Parkinson’s Disease are known to be at heightened risk of hip fracture from falls and in turn injurious falls among these patients can drastically alter the trajectory of the disease. So far, research on injury-disease interaction has been scant and fragmented. The proposed project is aimed at uncovering the gestalt of the relations between different injuries and different diseases through a data science approach.

Continue reading

The Federal Communications Commission (FCC) and the Census regularly publish data on U.S. Internet availability, performance and use, at granularities from census block to county and state. The project goal is to answer questions based on the available data, such as “How reliable is Internet access?”, “Who is deploying fiber where?”, “Can we predict reliability of different technologies?”, “Can we predict the deployment of fiber?”

Continue reading

When a colorectal cancer has grown through the wall of the colon or rectum and into other adjacent tissues or organs, it is identified as a T4 primary tumor. If there is no evidence of distant metastasis then it is labeled a locally advanced tumor. Such locally advanced tumors account for approximately 5-15 % of new colorectal cancers. Surgery remains the principal treatment modality for patients with locally advanced colorectal cancer. Studies have demonstrated planned en bloc or multivisceral resections rather than intraoperative assessment of margins more likely results in R0 resections leading to better local control and long-term survival. However, the decision-making for a surgeon confronting a T4 colorectal cancer is challenging because surgery related mortality rates after multivisceral resections are reported up to 12%.

Continue reading

The goal of this project is to develop and validate a deep neural network that predicts a child’s emotion and cognition. DSI scholars will implement 3D convolutional neural networks on brain imaging data from thousands of children to predict cognitive, emotional, and socio-developmental variables. Statistical evaluation of the model performance will be conducted. The scalable deep neural network analysis will help find brain underpinnings of cognition and emotion.

Continue reading

Author's picture

Columbia Data Science Institute (DSI) Scholars Program

The DSI Scholars Program is to engage and support undergraduate and master students in participating data science related research with Columbia faculty. The program’s unique enrichment activities will foster a learning and collaborative community in data science at Columbia.

Columbia University DSI

New York, NY