Data is central to the NYC Department of Health’s mission to protect and promote the health of all New Yorkers. The agency’s many programs often require large scale record linkages that integrate data from individuals across multiple public health data systems and disease registries. We are implementing a Master Person Index (MPI) system in order to centralize, optimize and standardize matching methodology for administrative data across the Department of Health.

Continue reading

We are interested in investigating how deaths and hospitalizations resulting from opioid overdoses cluster across space and time in the US. This analysis will be conducted with the aid of two comprehensive databases: 1) detailed mortality data across the US; and 2) a stratified sample of all hospitalizations in the US, which can be subset to select for opioid overdoses. Analyses will be extended to drug type (prescription drugs, fentanyl etc.) and subject demographics (age, race, etc.). We have previously conducted similar cluster analysis for other health phenomena.

Continue reading

Injury, such as falls, motor vehicle crashes, and drug overdose, is a major source of morbidity and mortality. The interaction between injury and disease is complex and mutually causative. For instance, patients with Alzheimer’s Disease or Parkinson’s Disease are known to be at heightened risk of hip fracture from falls and in turn injurious falls among these patients can drastically alter the trajectory of the disease. So far, research on injury-disease interaction has been scant and fragmented. The proposed project is aimed at uncovering the gestalt of the relations between different injuries and different diseases through a data science approach.

Continue reading

Our goal is use a large pool of homecare data (including structured data, free text clinical notes, and recorded patient-provider phone conversations) to build predictive models that help identify patients at risk for poor outcomes (like hospital admission or falls).

Continue reading

Despite the promise of predictive analytics in healthcare, the lack of continuous internal sensing devices has impeded its realization. With the exception of CGMs, no current commercially available wearable devices yield information intimate to the body. To overcome this deficiency, our research group has developed a minimally invasive wearable device capable of continuous monitoring of glucose and electrolytes in the superficial layer of the skin in an extremely minimally invasive manner.

Continue reading

Alzheimer’s disease and related dementia (AD/dementia) represent a looming public health crisis, affecting roughly 5 million people in the U.S. and 11% of older adults. As with other chronic conditions, racial/ethnic and socio-economic disparities exist in the prevalence and burden of illness. However, less is known about how disparities in access to care influence the care trajectories – i.e., the scope, frequency and sequence of services used across healthcare settings – of those with AD/dementia.

Continue reading

Author's picture

Columbia Data Science Institute (DSI) Scholars Program

The DSI Scholars Program is to engage and support undergraduate and master students in participating data science related research with Columbia faculty. The program’s unique enrichment activities will foster a learning and collaborative community in data science at Columbia.

Columbia University DSI

New York, NY